Pierre de Fermat ( Türkçe okunuşu piyer dö ferma dır) 1601 yılında doğmuş ve 1665 yılında ölmüştür. Kendisi aslen Fransızdır ve ünlü bir hukukçu ve matematikçidir. Hukuk ile ilgili çalışmalarını Fransa’nın Toulouse şehrinde yapmıştır. Kısaca Fermat olarak bilinir, mesleği memurluktur. Mesleğindeki işlerinden geriye kalan zamanlarında matematikle uğraşmıştır. Arşimet’in eğildiği diferansiyel hesaba geometrik görünümle yaklaşmıştır. Sayılar teorisi üzerinde çalışmış ve önemli sonuçlara ulaşmıştır. Olasılık ve analitik geometri konularında da önemli katkılarda bulunmuştur.
Bu kadar meşhur olmasının ve halen hatırlanmasının en önemli sebebi Fermat’nın Son Teoremi’dir. Modern sayılar kuramının kurucusu olarak kabul edilen 17. yüzyıl matematikçisi Pierre de Fermat’nın adını taşır bu teorem. Teorem ise aşağıdaki gibidir:
Herhangi x, y, ve z pozitif tam sayıları için,
ifadesini sağlayan ve 2'den büyük bir doğal sayı n yoktur. Fermat, bu problemi çözmüş, kanıtı da Eski Yunanlı matematikçi Diaphontos'un Arithmetika adlı kitabının kendindeki kopyasının sayfalarından birinin kenarına 1637'de şöyle yazmıştı:
x, y, z ve n pozitif tamsayılar ve n>2 olmak koşuluyla, x^n + y^n = z^n denkleminin çözümü yoktur. Ben bunun kanıtını buldum, ama kanıtı bu kenar boşluğuna sığdırmak olanaksız.
Ancak bu kanıt bulunamamıştır. Fermat'tan sonra matematikçiler bu önermenin bir türlü içinden çıkamamışlardır. Fermat'ın bıraktığı defterler arasında teoremin kanıtına rastlayamadıkları gibi, kendileri de ne doğruluğunu ne yanlışlığını kanıtlayabilmişlerdir. Yıllar boyunca (300 yıl sonrasına kadar) bu konuda yapılan çalışmalar sonucu bu teoremin Shimura-Taniyama Konjektürü'nün bir özel durumu olduğu anlaşılmış, ardından da 1993'te İngiliz matematikçi Andrew Wiles, eski öğrencilerinden Richard Taylor'ın da yardımıyla ve cebirsel geometrinin çok karmaşık araçlarını kullanarak teoremi kanıtlamanın bir yolunu bulmuş ve bu kanıtı 1995'te Annals of Mathematics adlı dergide yayımlamıştır. Shimura-Taniyama Konjektürü'nün böylelikle ispatlanması sonucu Fermat'nın Son Teoremi de 1995'te ispatlanmış oldu.
ifadesini sağlayan ve 2'den büyük bir doğal sayı n yoktur. Fermat, bu problemi çözmüş, kanıtı da Eski Yunanlı matematikçi Diaphontos'un Arithmetika adlı kitabının kendindeki kopyasının sayfalarından birinin kenarına 1637'de şöyle yazmıştı:
x, y, z ve n pozitif tamsayılar ve n>2 olmak koşuluyla, x^n + y^n = z^n denkleminin çözümü yoktur. Ben bunun kanıtını buldum, ama kanıtı bu kenar boşluğuna sığdırmak olanaksız.
Ancak bu kanıt bulunamamıştır. Fermat'tan sonra matematikçiler bu önermenin bir türlü içinden çıkamamışlardır. Fermat'ın bıraktığı defterler arasında teoremin kanıtına rastlayamadıkları gibi, kendileri de ne doğruluğunu ne yanlışlığını kanıtlayabilmişlerdir. Yıllar boyunca (300 yıl sonrasına kadar) bu konuda yapılan çalışmalar sonucu bu teoremin Shimura-Taniyama Konjektürü'nün bir özel durumu olduğu anlaşılmış, ardından da 1993'te İngiliz matematikçi Andrew Wiles, eski öğrencilerinden Richard Taylor'ın da yardımıyla ve cebirsel geometrinin çok karmaşık araçlarını kullanarak teoremi kanıtlamanın bir yolunu bulmuş ve bu kanıtı 1995'te Annals of Mathematics adlı dergide yayımlamıştır. Shimura-Taniyama Konjektürü'nün böylelikle ispatlanması sonucu Fermat'nın Son Teoremi de 1995'te ispatlanmış oldu.
Blaise Pascal'la yazışarak olasılık kuramını kurdu.Fermat; buluşlarını yayınlamayı savsaklayan, düzenli not tutmayan, kitapların kenarına acele notlar alan, buluşlarını arkadaşlarına alelade mektuplarla bildiren savruk bir kişiydi. Bu yüzden, analitik geometrinin kurucusu olarak Descartes'i, diferansiyel hesabın başlatıcısı olarak da Newton'u biliyoruz bugün.Ama fark etmez. O, bütün bunları zevki için yapmıştı. O, bir amatördü. Günümüzde; "Amatörlerin Prensi" olarak bilinir.
Hiç yorum yok:
Yorum Gönder
Yorumlarınız denetlenerek en kısa sürede yayınlanacaktır.